Triple Ion Formation from Lithium and Sodium Tropolonates in Ethanol

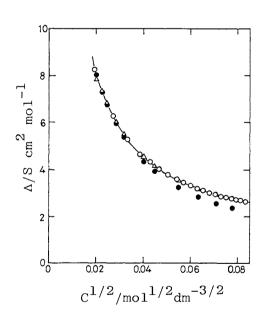
Masashi HOJO,* Chinatsu FUJIME, and Hitoshi YONEDA

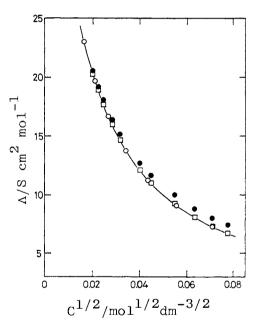
Department of Chemistry, Faculty of Science, Kochi University,

Akebono-cho, Kochi 780

Electrical conductivities of lithium and sodium tropolonates in ethanol were completely explained by the formation of higher ion aggregates in addition to ion pairs.

Protophobic aprotic solvents, such as acetonitrile nitrobenzene, have relatively high dielectric constants (ε_r) and very small solvation ability towards both anions and cations. We have demonstrated the formation of triple ions $(M_2X^+ \text{ and } MX_2^-)$ and quadrupole (M_2X_2) from monovalent electrolytes (MX) in protophobic aprotic solvents (20 < ε_r < 65) by means of polarography, 1,2 spectrophotometry, 3,4) and conductometry. 2,4-7) These higher ion aggregates were regarded to be caused by hydrogen bonding coordination forces as well as electrostatic forces. Causes of the failure in the Shedlovsky analysis and related methods for abnormal weak electrolytes have been discussed from the standpoint of higher ion aggregates. 6,7 On the other hand, in protic solvents such as ethanol, electrolytes can be strongly solvated; therefore, no higher ion aggregate has been observed by our investigations so far.


Tropolone (2-hydroxyl-2,4,6-cycloheptatrien-1-one) and its derivatives have attracted both organic^{8,9)} and inorganic¹⁰⁾ chemists by the characteristic behavior for many years. Recently, theoretical¹¹⁾ and experimental¹²⁾ examinations were performed for tropolone and its derivatives. Tropolone is a weak acid (pK_a = 6.7) in the aqueous solution.⁸⁾ In the present paper, we would like to present the first instance of the higher ion aggregates in a protic solvent, ethanol (ε_r = 24.55⁵⁾ at 25°C). Spectrophotometry was employed to examine the potential of triple cation formation for the tropolonate ion in ethanol. Then, conductivities of lithium and sodium tropolonates in ethanol were explained by the symmetrical triple ion (and the quadrupole) model.^{6,7)} Lithium benzoate, LiTTA, and NaTTA (TTA = thenoyltrifluoroacetonate) were also examined in this


connection.

Experiments with tropolonates were performed under shading the light for avoiding the possible effects of light. Other details concerning conductometric 5) and spectrophotometric 4) measurements have been shown elsewhere. The analysis and calculation were performed by following the methods described previously. 3,4,6,7

Tetrabutylammonium tropolonate (n-Bu $_4$ N C $_7$ H $_5$ O $_2$) in ethanol gave three main absorption peaks at λ_{max} = 402, 336, and 242 nm; the absorption coefficients (ϵ/dm^3 cm⁻¹ mol⁻¹) of the peaks were 7.8 x 10^3 , 1.0 x 10^4 , and 2.2 x 10^4 , respectively (cf. Ref. 9). When LiClO₄ was added to the 1.0 x 10^{-4} mol dm⁻³ tropolonate solution, isosbestic points observed were shifted distinctly by the increase of Li⁺ concentration (cf. Ref. 3). We had the equilibrium constants of K_1 = 3.0 x 10^4 (Li⁺ + X⁻ \rightleftharpoons Li⁺X⁻) and K₂ = 2.5 x 10^6 (2Li⁺ + X⁻ \rightleftharpoons (Li⁺)₂X⁻ where X^- = tropolonate ion).

Figure 1 shows molar conductivities ($\Lambda/S \text{ cm}^2 \text{ mol}^{-1}$) of Lithium tropolonate (C = $(0.4 - 6.0) \times 10^{-3} \text{ mol dm}^{-3}$). The observed Λ values (Λ_{obsd}) of all the concentration range were explained by the ion pair

sodium tropolonate in ethanol at 25°C: (O) observed; (\bullet) calculated with the ion pair only; (Δ) calculated with ion pair only; (Δ) calculated with ion pair only; (\Box) calculated with ion pair, triple ion, and quadrupole, K_1^a ' = 4.0 x 10³, K_2^a ' = 3.3 x 10⁵, K_4^a ' = 4.0 x 10³, K_2^a and K_1^a = 3.8 K_2^a and K_2^a Fig. 2. Observed and calculated Λ values of

Talbe 1.	Λ_0 and K_a	Values by	the	Shedlovsky	Analysis	and	the	Comparison
	with the	Real Values						

WICH	ine near	alues		
_		Shedlovsky		
	Λ ₀ α)	K _a b)	Λ ₀ (calcd) ^c)	K ^a ,d)
Li Tropolonate	15.78	4.81×10^3	34.50	3.72×10^4
Na Tropolonate	47.65	8.21×10^4	38.08	4.00×10^3
Li C ₆ H ₅ COO	36.24	2.80×10^2	35.20	2.27×10^2

a) Limiting molar conductivity by the direct Shedlovsky analysis. b) Apparent association constant. c) Calculated by Kohlrausch's additivity law with strong electrolytes. d) The real ion pair formation constant, (accompanied by higher ion aggregates).

 $(M^+ + X^- \Rightarrow MX, K^a_1')$ and the symmetrical triple ion $(2M^+ + X^- \Rightarrow (M^+)_2 X^-, K^a_2'; M^+ + 2X^- \Rightarrow M^+(X^-)_2, K^a_3'$, assuming $K^a_2' = K^a_3'$) with the relative error of $^+$ 0.8%. The ratio of Λ_T to Λ_0 were assumed to be 0.693, where Λ_T and Λ_0 stand for the limiting molar conductivities of triple ions $(M_2 X^+ M X_2^-)$ and simple ions $(M^+ X^-)$, respectively. The calculation with the ion pair formation alone caused the large negative error in Λ_{calcd} to Λ_{obsd} at the higher salt concentration, e.g., -15.2% at 6.0 x 10⁻³ mol dm⁻³, although Λ_{calcd} fitted Λ_{obsd} at a few points in lower concentrations.

To the contrary, sodium tropolonate gave the positive error in Λ_{calcd} with considering only the ion pair (cf. Fig. 2) at higher salt concentrations. The other example of positive error in Λ_{calcd} to Λ_{obsd} at higher concentrations has been reported in propylene carbonate. Conductivities in that case have been completely explained by the strong quadrupole formation (M2X++X- \Longrightarrow M2X2, Ka4' or M+ MX2- \Longrightarrow M2X2, Ka5'; Ka4'= Ka5') in addition to the ion pair (Ka1') and the triple ion (Ka2'= Ka3') formation. The conductivities of sodium tropolonate in ethanol could not be explained by the triple ion formation which caused further deviations in Λ_{calcd} from Λ_{obsd} . With the quadrupole formation (Ka4'= Ka5'= 4.0 x 10³) in addition to triple ions and the ion pair, Λ_{calcd} fitted Λ_{obsd} within $\pm 0.7\%$ relative error.

Lithium benzoate (Li C_6H_5C00) was also examined by conductometry in ethanol. The association constant (K_a) by the Shedlovsky analysis indicated that the salt associated weakly in ethanol (cf. Table 1). The Λ_0 value (36.24), directly obtained by the Shedlovsky analysis was almost coincident with Λ_0 (calcd), calculated by Kohlrausch's additivity law. The K_a value was naturally coincident with the ion pair formation constant (K_a^a), calculated by the Λ_{obsd} of the entire concentration range, (0.4 - 6.0)x 10⁻³ mol dm⁻³. The K_a values by the

Shedlovsky method utilized the data of (0.4 - 4.0) x 10^{-3} mol dm⁻³. Thus, the conductivities of LiC₆H₅COO in ethanol were explained by the ion pair formation only: $\Lambda_0 \approx \Lambda_0$ (calcd) and $K_a \approx K^a_1$ '.

As described above, however, the ion pair and the symmetrical formation accounted for the conductivities of lithium triple ion In this case, the Λ_0 value (15.78) was tropolonate in ethanol. smaller than Λ_0 (calcd) = 34.50, and the K_a value (4.8 x 10³) was also much smaller than K_1^a ' (3.72 x 10⁴): $\Lambda_0 < \Lambda_0$ (calcd) and $K_a \ll K_1^a$ '. Values of Λ_0 and K_a have been determined by the least-squares method the Shedlovsky plots (1/ Λ S vs. $C\Lambda Sf_{+}^{2}$). On the other hand, conductivities of sodium tropolonate showed the strong quadrupole formation $(K_4^a) = 4.0 \times 10^3$. The values of Λ_0 and K_a (by the direct Shedlovsky analysis) were much larger than the real values: Λ_0 > Λ_0 (calcd) and $K_a \gg K_1^a$ '. The causes of the failure in the Shedlovsky analysis have been discussed in the previous papers. 6,7)

Conductivities of LiTTA and NaTTA in ethanol could be explained by the triple ion formation. Results of α - and β -diketonate salts in protophobic aprotic solvents will be reported later.

References

- 1) M. Hojo and Y. Imai, Bull. Chem. Soc. Jpn., <u>56</u>, 1963 (1983).
- 2) M. Hojo, T. Takiguchi, M. Hagiwara, H. Nagai, and Y. Imai, J. Phys. Chem., <u>93</u>, 955 (1989).
- 3) M. Hojo, A. Tanio, Y. Miyauchi, and Y. Imai, Chem. Lett., <u>1991</u>, 1827.
- 4) M. Hojo, Y. Miyauchi, A. Tanio, and Y. Imai, J. Chem. Soc., Faraday Trans., <u>87</u>, 3847 (1991).
- 5) M. Hojo, A. Watanabe, T. Mizobuchi, and Y. Imai, J. Phys. Chem., <u>94</u>, 6073 (1990).
- 6) Y. Miyauchi, M. Hojo, N. Ide, and Y. Imai, J. Chem. Soc., Faraday Trans., <u>88</u>, 1425 (1992).
- 7) Y. Miyauchi, M. Hojo, H. Moriyama, and Y. Imai, J. Chem. Soc., Faraday Trans., in press.
- 8) W. E. Doering and L. H. Knox, J. Am. Chem. Soc., <u>73</u>, 828 (1951).
- 9) Y. Pocker and J. C. Ciula, J. Am. Chem. Soc., 110, 2904 (1988).
- 10) "IUPAC Chemical Data Series, No. 22," ed by D. D. Perrin, Pergamon Press, Oxford (1979), Part B, p. 479.
- 11) R. L. Redington and C. W. Bock, J. Phys. Chem., <u>95</u>, 10284 (1991).
- 12) H. Sekiya, Y. Nagashima, T. Tsuji, Y. Nishimura, A. Mori, and H. Takeshita, J. Phys. Chem., <u>95</u>, 10311 (1991).

(Received September 9, 1992)